Electrochemical properties for Cu_{5-x}Li_xFeS₄

Atsuhsi Hirano

Department of Chemical for Materials, Faculty of Engineering, Mie University 1577 Kurimamachiya-cho, Tsu, Mie 5148507, JAPAN

> hirano@chem.mie-u.ac.jp http://material.chem.mie-u.ac.jp/~hirano/

Introduction

Iron sulfides and lithium iron sulfide have been investigated as an electrode material in a solid state lithium battery [1, 2]. When Li₂FeS₂ or FeS₂ are reduced, the final products were reported to Li₄FeS₂ [1] or Fe metal [2]. The reduction mechanism of Fe-S series materials are not yet clear. Another Fe-S series materials may available as an electrode material in lithium batteries.

Copper iron sulfides, $CuFeS_2$ (chalcopyrite) and Cu_5FeS_4 (bornite) have been reported as a Cu ion and electron mixed conductor [3]. $Cu_{5-x}Li_xFeS_4$ have been synthesized and electorchemical properties have been studied.

Experimental

Cu₅FeS₄ and Cu_{5-x}Li_xFeS₄ were synthesized from Cu₂S, FeS, Li₂S and S. For Cu₅FeS₄, the mixture with variable mixing ratio, Cu₂S/FeS=1.5~2.5, were heated at 750 C for 24h under nitrogen gas flow. For Cu_{5-x}Li_xFeS₄, several mixing ratio of Cu₂S, FeS and Li₂S were heated. The powder x-ray diffraction patterns and electrochemical properties using conventional coin-type cell were measured.

Results and Discussion

Figure 1 shows the x-ray diffraction patterns for Cu_5FeS_4 with various mixing ratio of Cu_2S / $FeS = 1.5 \sim 2.5$. All samples show the Cu_5FeS_4 pattern. However, the samples with the mixing ratio of 2.0 and 2.5 showed the impurity phase which determined as Cu_2S . The single phase was obtained at the samples with the mixing ratio of 1.75. The oxidation state in this sample, $Cu_{3.5}FeS_4$, is not yet determined. Further study on the structure and oxidation state is necessary.

Figure 2 shows the charge-discharge corves for Cu_5FeS_4 with mixing ratio of Cu_2S / FeS = 1.75. At first discharge curve differ to second discharge curve. This results suggests the structural change among the first discharge state. In the charge state, three plateau observed at 1.7V, 2.3V and 2.6V. The capacity of first and second plateau decreased with the cycle. The intercalation mechanism and the structural change on first deintercalation will be discussed.

The x-ray diffraction pattern of the sample with high Li₂S ratio is similar to Li₂FeS₂ pattern. The

electrochemical properties of Cu_{5-x}Li_xFeS₄ will be discussed.

References

[1] Kazunori Takada, Kazuya Iwamoto, and Shigeo Kondo, Solid State Ionics, 117, 273-276 (1999).

[2] R. A. Guidotti, F. W. Reinhardt, in: Proceedings of the 9th International Symposium on Molten Salts, 1994, 820 (1994).

[3] R. Berger and R. V. Bucur, Diffusion in copper sulfides; An experimental study of chalcocite, chalcopyrite and bornite, Report to Swedish Nuclear Power Inspectorate (Dec. 1995).

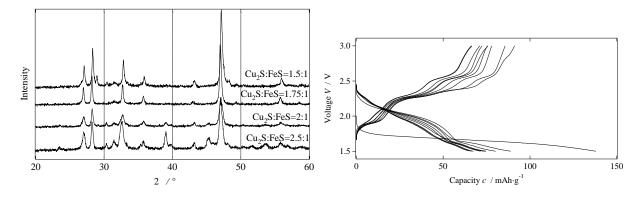


Fig. 1 X-ray diffraction patterns for Cu_5FeS_4 with various mixing ratio of Cu_2S / $\text{FeS}=1.5\sim2.5$.

Fig.2 Charge-discharge curves for Cu_5FeS_4 with mixing ratio of Cu_2S / FeS = 1.75.

About Myself

Name: Atsushi Hirano

Nationality: Japanese

Hometown ikeda, Osaka, Japan

Degree Ph. D (Kobe Univ., Japan)

Study Solid state chemistry

Hobby Internet, Movie, Mah-jongg

