Thermoelectric Properties of Sr₆Co₅O_{15,8} Single Crystal

Kouta Iwasaki¹, Tsuyoshi Ito¹, Masahito Yoshino¹, Tsuneo Matsui^{1,2}, Takanori Nagasaki² and Yuji Arita²

1) Department of Materials, Physics and Energy Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan 2) EcoTopia Science Institute, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan e-mail: k-iwasaki@nucl.nagoya-u.ac.jp

1. Introduction

Thermoelectric materials have attracted attentions from the standpoint of efficient use of energy since they convert waste heat into electrical energy. In the oxide ceramics, Na_xCoO₂ is known to show high thermoelectric properties (Fig. 1) [1]. The high electrical conductivity and Seebeck coefficient is attributed to the Co-O triangular lattice, in which CoO_6 octahedra share their edges, thus, the relation between the electrical properties and Co-O polyhedra are of interest.

Sr₆Co₅O₁₅ has a pseudo one-dimensional structure consisting of Co-O chains and alkaline earth

atoms, in which four CoO₆ octahedra and one CoO₆ trigonal prism share their faces and alkaline earth atoms isolate the Co-O chains (Fig. 1) [2]. In this study, we prepare the single crystal of Sr₆Co₅O_{15-δ}, and investigated the thermoelectric properties along the Co-O chains.

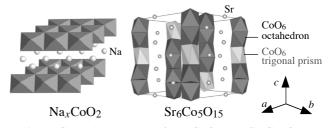
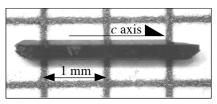



Fig. 1. Crystal structures of Na_xCoO₂ and Sr₆Co₅O₁₅.

2. Experimental

Rod-like single crystals of $Sr_6Co_5O_{14,3}$ (a = 9.4434(11) Å and c = 12.5026(9) Å) were grown by the flux method. K₂CO₃ and SrCl₂ powders were used as the flux, and Co₃O₄ and SrCO₃ powders were used as starting materials. These powders were put into an Al_2O_3 crucible. The sample was heated at 1243 K for 2h in air, cooled to 1153 K at a cooling rate of 0.3 Kh⁻¹, and cooled to room temperature

inside the furnace by turning off the power. Rod-like crystals were obtained by rinsing the flux with distilled water. The oxygen content was estimated from the relationship between the lattice parameters and δ in Sr₆Co₅O_{15-δ}, [3]. The X-ray diffraction method indicated that the rod-like crystals grew along the Co-O chains (c- Fig. 2. SEM image for Sr₆Co₅O_{14.3} crystal. axis) (Fig. 2).

3. Results and Discussion

Figure 3 shows the electrical conductivity (σ) of the Sr₆Co₅O_{14.3} single crystal along the Co-O chains (c-axis). The electrical conductivity of Sr₆Co₅O_{14.3} exhibited semiconducting behavior from 2.6 to 96 Scm⁻¹ in 300 - 900 K. The log σ was proportional to 1/T above 400 K, and the activation energy, E_a , was estimated to be 0.11 eV.

Figure 4 shows the Seebeck coefficient (S) of the $Sr_6Co_5O_{14.3}$ single crystal along the Co-O chains (*c*-axis). The Seebeck coefficient was positive, and it decreased with increasing temperature. The increase of σ and the decrease of S were attributable to the increase of carrier density by thermal activation.

The power factor (σS^2) of the Sr₆Co₅O_{14.3} single crystal increased with increasing temperature, and reached 1.9x10⁻⁴ Wm⁻¹K⁻² at 900 K. However, the power factor was about one order of magnitude smaller than that of Na_xCoO₂ along the Co-O triangular lattice. The difference was mainly due to the high electrical conductivity of Na_xCoO₂.

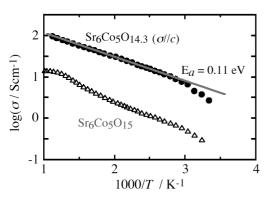


Fig. 3. Electrical conductivity for Sr₆Co₅O_{14.3} single crystal and polycrystalline Sr₆Co₅O₁₅.

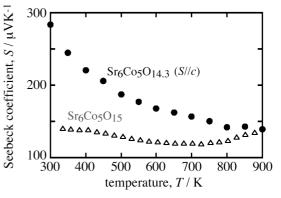


Fig. 4. Seebeck coefficient for Sr₆Co₅O_{14.3} single crystal and polycrystalline Sr₆Co₅O₁₅.

References

- [1] I. Terasaki et al., Phys. Rev. B 56 (1997) 12685.
- [2] W.T.A. Harrison et al., J. Chem. Soc. Chem. Commun. 1953 (1995).
- [3] K. Iwasaki et al., Mater. Res. Bull. 41 (2006) 732.

About Myself

Name:	Kouta Iwasaki
Nationality:	Japan
Born	April 15, 1973
Hometown	Utsumi, Aichi, Japan
	My hometown is famous for the beach and hot spring!
Degree	Ph. D (Tohoku Univ., Japan)
Study	Crystal Growth, Crystal Structure Analysis, Thermoelectric Materials
Hobby	Soccer, Ski, Mah-jongg
Favorite Team	Nagoya Grampus Eight
Favorite Player	Dragan Stojkovic, Daisuke Matsui, Syunsuke Nakamura
Favorite Ramen	Ippudo
My Car	RAV4 (TOYOTA, '05~)